
ptg31790760

ptg31790760

Large-Scale C++

ptg31790760

The Pearson Addison-Wesley Professional Computing Series was
created in 1990 to provide serious programmers and networking

professionals with well-written and practical reference books. Pearson
Addison-Wesley is renowned for publishing accurate and authoritative
books on current and cutting-edge technology, and the titles in this
series will help you understand the state of the art in programming
languages, operating systems, and networks.

Visit informit.com/series/professionalcomputing for a complete list of
available publications.

Make sure to connect with us!
informit.com/socialconnect

The Pearson Addison-Wesley
Professional Computing Series

Brian W. Kernighan, Consulting Editor

http://informit.com/series/professionalcomputing
http://informit.com/socialconnect

ptg31790760

Large-Scale C++

Volume I

Process and Architecture

John Lakos

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

ptg31790760

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and the publisher was aware of a trademark

claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or

implied warranty of any kind and assume no responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in connection with or arising out of the use of the

information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which

may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales department

at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019948467

Copyright © 2020 Pearson Education, Inc.

Cover image: MBoe/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from

the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any

form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information

regarding permissions, request forms and the appropriate contacts within the Pearson Education Global

Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-201-71706-8

ISBN-10: 0-201-71706-9

ScoutAutomatedPrintLine

mailto:at$$$corpsales@pearsoned.comor(
mailto:contact$$$governmentsales@pearsoned.com
mailto:contact$$$intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

ptg31790760

To my wife, Elyse, with whom the universe rewarded me,
and five wonderful children:

Sarah
Michele

Gabriella
Lindsey
Andrew

ptg31790760

This page intentionally left blank

ptg31790760

vii

Contents

Preface xvii

Acknowledgments xxv

Chapter 0: Motivation 1
0.1 The Goal: Faster, Better, Cheaper! .. 3

0.2 Application vs. Library Software .. 5

0.3 Collaborative vs. Reusable Software ... 14

0.4 Hierarchically Reusable Software .. 20

0.5 Malleable vs. Stable Software .. 29

0.6 The Key Role of Physical Design .. 44

0.7 Physically Uniform Software: The Component ... 46

0.8 Quantifying Hierarchical Reuse: An Analogy ... 57

0.9 Software Capital ... 86

0.10 Growing the Investment ... 98

0.11 The Need for Vigilance ..110

0.12 Summary ..114

Chapter 1: Compilers, Linkers, and Components 123
1.1 Knowledge Is Power: The Devil Is in the Details ..125

1.1.1 “Hello World!” ..125

1.1.2 Creating C++ Programs ..126

1.1.3 The Role of Header Files ...128

1.2 Compiling and Linking C++ ..129

1.2.1 The Build Process: Using Compilers and Linkers ...129

1.2.2 Classical Atomicity of Object (.o) Files ...134

ptg31790760

viii Contents

1.2.3 Sections and Weak Symbols in .o Files ..138

1.2.4 Library Archives ...139

1.2.5 The “Singleton” Registry Example ..141

1.2.6 Library Dependencies ...146

1.2.7 Link Order and Build-Time Behavior ..151

1.2.8 Link Order and Runtime Behavior ...152

1.2.9 Shared (Dynamically Linked) Libraries ...153

1.3 Declarations, Definitions, and Linkage ..153

1.3.1 Declaration vs. Definition ..154

1.3.2 (Logical) Linkage vs. (Physical) Linking ...159

1.3.3 The Need for Understanding Linking Tools ...160

1.3.4 Alternate Definition of Physical “Linkage”: Bindage ...160

1.3.5 More on How Linkers Work ...162

1.3.6 A Tour of Entities Requiring Program-Wide Unique Addresses163

1.3.7 Constructs Where the Caller’s Compiler Needs the Definition’s Source Code166

1.3.8 Not All Declarations Require a Definition to Be Useful ...168

1.3.9 The Client’s Compiler Typically Needs to See Class Definitions169

1.3.10 Other Entities Where Users’ Compilers Must See the Definition170

1.3.11 Enumerations Have External Linkage, but So What?!...170

1.3.12 Inline Functions Are a Somewhat Special Case ...171

1.3.13 Function and Class Templates ..172

1.3.14 Function Templates and Explicit Specializations ...172

1.3.15 Class Templates and Their Partial Specializations ...179

1.3.16 extern Templates ..183

1.3.17 Understanding the ODR (and Bindage) in Terms of Tools ..185

1.3.18 Namespaces ..186

1.3.19 Explanation of the Default Linkage of const Entities ..188

1.3.20 Summary of Declarations, Definitions, Linkage, and Bindage ...188

1.4 Header Files ..190

1.5 Include Directives and Include Guards ..201

1.5.1 Include Directives ...201

1.5.2 Internal Include Guards ..203

1.5.3 (Deprecated) External Include Guards ...205

1.6 From .h /.cpp Pairs to Components ..209

1.6.1 Component Property 1 ..210

1.6.2 Component Property 2 ..212

1.6.3 Component Property 3 ..214

1.7 Notation and Terminology ..216

1.7.1 Overview ...217

1.7.2 The Is-A Logical Relationship ...219

1.7.3 The Uses-In-The-Interface Logical Relationship ...219

1.7.4 The Uses-In-The-Implementation Logical Relationship ..221

1.7.5 The Uses-In-Name-Only Logical Relationship and the Protocol Class226

1.7.6 In-Structure-Only (ISO) Collaborative Logical Relationships ..227

1.7.7 How Constrained Templates and Interface Inheritance Are Similar230

ptg31790760

Contents ix

1.7.8 How Constrained Templates and Interface Inheritance Differ ...232

1.7.8.1 Constrained Templates, but Not Interface Inheritance ..232

1.7.8.2 Interface Inheritance, but Not Constrained Templates ..233

1.7.9 All Three “Inheriting” Relationships Add Unique Value ...234

1.7.10 Documenting Type Constraints for Templates ...234

1.7.11 Summary of Notation and Terminology ...237

1.8 The Depends-On Relation ..237

1.9 Implied Dependency ...243

1.10 Level Numbers ...251

1.11 Extracting Actual Dependencies ..256

1.11.1 Component Property 4 ..257

1.12 Summary ..259

Chapter 2: Packaging and Design Rules 269
2.1 The Big Picture...270

2.2 Physical Aggregation ..275

2.2.1 General Definition of Physical Aggregate ..275

2.2.2 Small End of Physical-Aggregation Spectrum ...275

2.2.3 Large End of Physical-Aggregation Spectrum ...277

2.2.4 Conceptual Atomicity of Aggregates ...277

2.2.5 Generalized Definition of Dependencies for Aggregates ...278

2.2.6 Architectural Significance ..278

2.2.7 Architectural Significance for General UORs ..279

2.2.8 Parts of a UOR That Are Architecturally Significant ...279

2.2.9 What Parts of a UOR Are Not Architecturally Significant? ...279

2.2.10 A Component Is “Naturally” Architecturally Significant ..280

2.2.11 Does a Component Really Have to Be a .h /.cpp Pair? ..280

2.2.12 When, If Ever, Is a .h /.cpp Pair Not Good Enough? ...280

2.2.13 Partitioning a .cpp File Is an Organizational-Only Change ..281

2.2.14 Entity Manifest and Allowed Dependencies ..281

2.2.15 Need for Expressing Envelope of Allowed Dependencies ...284

2.2.16 Need for Balance in Physical Hierarchy ..284

2.2.17 Not Just Hierarchy, but Also Balance ...285

2.2.18 Having More Than Three Levels of Physical Aggregation Is Too Many287

2.2.19 Three Levels Are Enough Even for Larger Systems ..289

2.2.20 UORs Always Have Two or Three Levels of Physical Aggregation289

2.2.21 Three Balanced Levels of Aggregation Are Sufficient. Trust Me!.....................................290

2.2.22 There Should Be Nothing Architecturally Significant Larger Than a UOR290

2.2.23 Architecturally Significant Names Must Be Unique ..292

2.2.24 No Cyclic Physical Dependencies! ..293

2.2.25 Section Summary ..293

2.3 Logical/Physical Coherence ..294

ptg31790760

x Contents

2.4 Logical and Physical Name Cohesion ..297

2.4.1 History of Addressing Namespace Pollution ...298

2.4.2 Unique Naming Is Required; Cohesive Naming Is Good for Humans298

2.4.3 Absurd Extreme of Neither Cohesive nor Mnemonic Naming ..298

2.4.4 Things to Make Cohesive ...300

2.4.5 Past/Current Definition of Package ..300

2.4.6 The Point of Use Should Be Sufficient to Identify Location ...301

2.4.7 Proprietary Software Requires an Enterprise Namespace ...309

2.4.8 Logical Constructs Should Be Nominally Anchored to Their Component311

2.4.9 Only Classes, structs, and Free Operators at Package-Namespace Scope312

2.4.10 Package Prefixes Are Not Just Style ..322

2.4.11 Package Prefixes Are How We Name Package Groups ...326

2.4.12 using Directives and Declarations Are Generally a BAD IDEA328

2.4.13 Section Summary ..333

2.5 Component Source-Code Organization ..333

2.6 Component Design Rules ..342

2.7 Component-Private Classes and Subordinate Components ..370

2.7.1 Component-Private Classes ..370

2.7.2 There Are Several Competing Implementation Alternatives ..371

2.7.3 Conventional Use of Underscore ..371

2.7.4 Classic Example of Using Component-Private Classes ...378

2.7.5 Subordinate Components ..381

2.7.6 Section Summary ..384

2.8 The Package ..384

2.8.1 Using Packages to Factor Subsystems ...384

2.8.2 Cycles Among Packages Are BAD ..394

2.8.3 Placement, Scope, and Scale Are an Important First Consideration395

2.8.4 The Inestimable Communicative Value of (Unique) Package Prefixes399

2.8.5 Section Summary ..401

2.9 The Package Group ...402

2.9.1 The Third Level of Physical Aggregation ..402

2.9.2 Organizing Package Groups During Deployment ..413

2.9.3 How Do We Use Package Groups in Practice? ..414

2.9.4 Decentralized (Autonomous) Package Creation ..421

2.9.5 Section Summary ..421

2.10 Naming Packages and Package Groups ..422

2.10.1 Intuitively Descriptive Package Names Are Overrated ..422

2.10.2 Package-Group Names ...423

2.10.3 Package Names ...424

2.10.4 Section Summary ..427

2.11 Subpackages ..427

2.12 Legacy, Open-Source, and Third-Party Software ...431

2.13 Applications ...433

ptg31790760

Contents xi

2.14 The Hierarchical Testability Requirement ..437

2.14.1 Leveraging Our Methodology for Fine-Grained Unit Testing ..438

2.14.2 Plan for This Section (Plus Plug for Volume II and Especially Volume III)438

2.14.3 Testing Hierarchically Needs to Be Possible ..439

2.14.4 Relative Import of Local Component Dependencies with Respect to Testing447

2.14.5 Allowed Test-Driver Dependencies Across Packages ...451

2.14.6 Minimize Test-Driver Dependencies on the External Environment454

2.14.7 Insist on a Uniform (Standalone) Test-Driver Invocation Interface456

2.14.8 Section Summary ...458

2.15 From Development to Deployment ...459

2.15.1 The Flexible Deployment of Software Should Not Be Compromised459

2.15.2 Having Unique .h and .o Names Are Key ...460

2.15.3 Software Organization Will Vary During Development..460

2.15.4 Enterprise-Wide Unique Names Facilitate Refactoring ..461

2.15.5 Software Organization May Vary During Just the Build Process462

2.15.6 Flexibility in Deployment Is Needed Even Under Normal Circumstances462

2.15.7 Flexibility Is Also Important to Make Custom Deployments Possible.............................462

2.15.8 Flexibility in Stylistic Rendering Within Header Files ...463

2.15.9 How Libraries Are Deployed Is Never Architecturally Significant464

2.15.10 Partitioning Deployed Software for Engineering Reasons ...464

2.15.11 Partitioning Deployed Software for Business Reasons ..467

2.15.12 Section Summary ...469

2.16 Metadata ..469

2.16.1 Metadata Is “By Decree” ..470

2.16.2 Types of Metadata ...471

2.16.2.1 Dependency Metadata ...471

2.16.2.2 Build Requirements Metadata ...475

2.16.2.3 Membership Metadata ...476

2.16.2.4 Enterprise-Specific Policy Metadata ...476

2.16.3 Metadata Rendering ..478

2.16.4 Metadata Summary ..479

2.17 Summary ...481

Chapter 3: Physical Design and Factoring 495
3.1 Thinking Physically ...497

3.1.1 Pure Classical (Logical) Software Design Is Naive ...497

3.1.2 Components Serve as Our Fine-Grained Modules ...498

3.1.3 The Software Design Space Has Direction ..498

3.1.3.1 Example of Relative Physical Position: Abstract Interfaces.............................498

3.1.4 Software Has Absolute Location ..500

3.1.4.1 Asking the Right Questions Helps Us Determine Optimal Location500

3.1.4.2 See What Exists to Avoid Reinventing the Wheel ..500

3.1.4.3 Good Citizenship: Identifying Proper Physical Location501

ptg31790760

xii Contents

3.1.5 The Criteria for Colocation Should Be Substantial, Not Superficial501

3.1.6 Discovery of Nonprimitive Functionality Absent Regularity Is Problematic501

3.1.7 Package Scope Is an Important Design Consideration ...502

3.1.7.1 Package Charter Must Be Delineated in Package-Level Documentation502

3.1.7.2 Package Prefixes Are at Best Mnemonic Tags, Not Descriptive Names502

3.1.7.3 Package Prefixes Force Us to Consider Design More Globally Early503

3.1.7.4 Package Prefixes Force Us to Consider Package Dependencies

from the Start ..503

3.1.7.5 Even Opaque Package Prefixes Grow to Take On Important Meaning504

3.1.7.6 Effective (e.g., Associative) Use of Package Names Within Groups504

3.1.8 Limitations Due to Prohibition on Cyclic Physical Dependencies505

3.1.9 Constraints on Friendship Intentionally Preclude Some Logical Designs508

3.1.10 Introducing an Example That Justifiably Requires Wrapping ..508

3.1.10.1 Wrapping Just the Time Series and Its Iterator in a Single Component509

3.1.10.2 Private Access Within a Single Component Is an Implementation Detail511

3.1.10.3 An Iterator Helps to Realize the Open-Closed Principle511

3.1.10.4 Private Access Within a Wrapper Component Is Typically Essential512

3.1.10.5 Since This Is Just a Single-Component Wrapper, We Have Several Options ..512

3.1.10.6 Multicomponent Wrappers, Not Having Private Access, Are Problematic513

3.1.10.7 Example Why Multicomponent Wrappers Typically Need “Special” Access 515

3.1.10.8 Wrapping Interoperating Components Separately Generally Doesn’t Work ...516

3.1.10.9 What Should We Do When Faced with a Multicomponent Wrapper?516

3.1.11 Section Summary ..517

3.2 Avoiding Poor Physical Modularity ...517

3.2.1 There Are Many Poor Modularization Criteria; Syntax Is One of Them517

3.2.2 Factoring Out Generally Useful Software into Libraries Is Critical518

3.2.3 Failing to Maintain Application/Library Modularity Due to Pressure518

3.2.4 Continuous Demotion of Reusable Components Is Essential...519

3.2.4.1 Otherwise, in Time, Our Software Might Devolve into a

“Big Ball of Mud”! ...521

3.2.5 Physical Dependency Is Not an Implementation Detail to an App Developer521

3.2.6 Iterators Can Help Reduce What Would Otherwise Be Primitive Functionality529

3.2.7 Not Just Minimal, Primitive: The Utility struct ...529

3.2.8 Concluding Example: An Encapsulating Polygon Interface ...530

3.2.8.1 What Other UDTs Are Used in the Interface? ..530

3.2.8.2 What Invariants Should our::Polygon Impose? ..531

3.2.8.3 What Are the Important Use Cases? ...531

3.2.8.4 What Are the Specific Requirements? ..532

3.2.8.5 Which Required Behaviors Are Primitive and Which Aren’t?533

3.2.8.6 Weighing the Implementation Alternatives ...534

3.2.8.7 Achieving Two Out of Three Ain’t Bad ..535

3.2.8.8 Primitiveness vs. Flexibility of Implementation ...535

3.2.8.9 Flexibility of Implementation Extends Primitive Functionality536

3.2.8.10 Primitiveness Is Not a Draconian Requirement ..536

ptg31790760

Contents xiii

3.2.8.11 What About Familiar Functionality Such as Perimeter and Area?537

3.2.8.12 Providing Iterator Support for Generic Algorithms ..539

3.2.8.13 Focus on Generally Useful Primitive Functionality ...540

3.2.8.14 Suppress Any Urge to Colocate Nonprimitive Functionality541

3.2.8.15 Supporting Unusual Functionality ..541

3.2.9 Semantics vs. Syntax as Modularization Criteria ...552

3.2.9.1 Poor Use of u as a Package Suffix ...552

3.2.9.2 Good Use of util as a Component Suffix ...553

3.2.10 Section Summary ..553

3.3 Grouping Things Physically That Belong Together Logically ..555

3.3.1 Four Explicit Criteria for Class Colocation ..555

3.3.1.1 First Reason: Friendship ...556

3.3.1.2 Second Reason: Cyclic Dependency ..557

3.3.1.3 Third Reason: Single Solution ..557

3.3.1.4 Fourth Reason: Flea on an Elephant ...559

3.3.2 Colocation Beyond Components ...560

3.3.3 When to Make Helper Classes Private to a Component ...561

3.3.4 Colocation of Template Specializations ..564

3.3.5 Use of Subordinate Components ...564

3.3.6 Colocate Tight Mutual Collaboration within a Single UOR ...565

3.3.7 Day-Count Example ..566

3.3.8 Final Example: Single-Threaded Reference-Counted Functors576

3.3.8.1 Brief Review of Event-Driven Programming ...576

3.3.8.2 Aggregating Components into Packages ..586

3.3.8.3 The Final Result ..589

3.3.9 Section Summary ..591

3.4 Avoiding Cyclic Link-Time Dependencies ..592

3.5 Levelization Techniques ...602

3.5.1 Classic Levelization ...602

3.5.2 Escalation ..604

3.5.3 Demotion ...614

3.5.4 Opaque Pointers ..618

3.5.4.1 Manager/Employee Example ..618

3.5.4.2 Event/EventQueue Example ...623

3.5.4.3 Graph/Node/Edge Example ..625

3.5.5 Dumb Data ..629

3.5.6 Redundancy ...634

3.5.7 Callbacks ...639

3.5.7.1 Data Callbacks ..640

3.5.7.2 Function Callbacks ..643

3.5.7.3 Functor Callbacks ...651

3.5.7.4 Protocol Callbacks ..655

3.5.7.5 Concept Callbacks ..664

ptg31790760

xiv Contents

3.5.8 Manager Class ...671

3.5.9 Factoring ..674

3.5.10 Escalating Encapsulation ...677

3.5.10.1 A More General Solution to Our Graph Subsystem681

3.5.10.2 Encapsulating the Use of Implementation Components683

3.5.10.3 Single-Component Wrapper ...685

3.5.10.4 Overhead Due to Wrapping ..687

3.5.10.5 Realizing Multicomponent Wrappers ...687

3.5.10.6 Applying This New, “Heretical” Technique to Our Graph Example688

3.5.10.7 Why Use This “Magic” reinterpret_cast Technique?692

3.5.10.8 Wrapping a Package-Sized System ..693

3.5.10.9 Benefits of This Multicomponent-Wrapper Technique701

3.5.10.10 Misuse of This Escalating-Encapsulation Technique702

3.5.10.11 Simulating a Highly Restricted Form of Package-Wide Friendship702

3.5.11 Section Summary ..703

3.6 Avoiding Excessive Link-Time Dependencies ..704

3.6.1 An Initially Well-Factored Date Class That Degrades Over Time705

3.6.2 Adding Business-Day Functionality to a Date Class (BAD IDEA)715

3.6.3 Providing a Physically Monolithic Platform Adapter (BAD IDEA)..................................717

3.6.4 Section Summary ..722

3.7 Lateral vs. Layered Architectures ..722

3.7.1 Yet Another Analogy to the Construction Industry ..723

3.7.2 (Classical) Layered Architectures...723

3.7.3 Improving Purely Compositional Designs ...726

3.7.4 Minimizing Cumulative Component Dependency (CCD) ...727

3.7.4.1 Cumulative Component Dependency (CCD) Defined729

3.7.4.2 Cumulative Component Dependency: A Concrete Example730

3.7.5 Inheritance-Based Lateral Architectures ..732

3.7.6 Testing Lateral vs. Layered Architectures ..738

3.7.7 Section Summary ..738

3.8 Avoiding Inappropriate Link-Time Dependencies ...739

3.8.1 Inappropriate Physical Dependencies...740

3.8.2 “Betting” on a Single Technology (BAD IDEA) ...745

3.8.3 Section Summary ..753

3.9 Ensuring Physical Interoperability ...753

3.9.1 Impeding Hierarchical Reuse Is a BAD IDEA ..753

3.9.2 Domain-Specific Use of Conditional Compilation Is a BAD IDEA754

3.9.3 Application-Specific Dependencies in Library Components Is a BAD IDEA758

3.9.4 Constraining Side-by-Side Reuse Is a BAD IDEA ..760

3.9.5 Guarding Against Deliberate Misuse Is Not a Goal ...761

3.9.6 Usurping Global Resources from a Library Component Is a BAD IDEA762

3.9.7 Hiding Header Files to Achieve Logical Encapsulation Is a BAD IDEA762

3.9.8 Depending on Nonportable Software in Reusable Libraries Is a BAD IDEA...................766

ptg31790760

Contents xv

3.9.9 Hiding Potentially Reusable Software Is a BAD IDEA...769

3.9.10 Section Summary ..772

3.10 Avoiding Unnecessary Compile-Time Dependencies ...773

3.10.1 Encapsulation Does Not Preclude Compile-Time Coupling ..773

3.10.2 Shared Enumerations and Compile-Time Coupling ..776

3.10.3 Compile-Time Coupling in C++ Is Far More Pervasive Than in C778

3.10.4 Avoiding Unnecessary Compile-Time Coupling ..778

3.10.5 Real-World Example of Benefits of Avoiding Compile-Time Coupling783

3.10.6 Section Summary ..790

3.11 Architectural Insulation Techniques ..790

3.11.1 Formal Definitions of Encapsulation vs. Insulation ..790

3.11.2 Illustrating Encapsulation vs. Insulation in Terms of Components791

3.11.3 Total vs. Partial Insulation ...793

3.11.4 Architecturally Significant Total-Insulation Techniques ..794

3.11.5 The Pure Abstract Interface (“Protocol”) Class ...796

3.11.5.1 Extracting a Protocol ..799

3.11.5.2 Equivalent “Bridge” Pattern ...801

3.11.5.3 Effectiveness of Protocols as Insulators ...802

3.11.5.4 Implementation-Specific Interfaces ..802

3.11.5.5 Static Link-Time Dependencies ...802

3.11.5.6 Runtime Overhead for Total Insulation ..803

3.11.6 The Fully Insulating Concrete Wrapper Component ...804

3.11.6.1 Poor Candidates for Insulating Wrappers...807

3.11.7 The Procedural Interface ..810

3.11.7.1 What Is a Procedural Interface? ...810

3.11.7.2 When Is a Procedural Interface Indicated? ...811

3.11.7.3 Essential Properties and Architecture of a Procedural Interface812

3.11.7.4 Physical Separation of PI Functions from Underlying C++ Components813

3.11.7.5 Mutual Independence of PI Functions ...814

3.11.7.6 Absence of Physical Dependencies Within the PI Layer814

3.11.7.7 Absence of Supplemental Functionality in the PI Layer814

3.11.7.8 1-1 Mapping from PI Components to Lower-Level Components

(Using the z_ Prefix) ...815

3.11.7.9 Example: Simple (Concrete) Value Type ...816

3.11.7.10 Regularity/Predictability of PI Names ..819

3.11.7.11 PI Functions Callable from C++ as Well as C ...823

3.11.7.12 Actual Underlying C++ Types Exposed Opaquely for C++ Clients824

3.11.7.13 Summary of Essential Properties of the PI Layer ..825

3.11.7.14 Procedural Interfaces and Return-by-Value..826

3.11.7.15 Procedural Interfaces and Inheritance ..828

3.11.7.16 Procedural Interfaces and Templates ..829

3.11.7.17 Mitigating Procedural-Interface Costs..830

3.11.7.18 Procedural Interfaces and Exceptions ..831

ptg31790760

xvi Contents

3.11.8 Insulation and DLLs ..833

3.11.9 Service-Oriented Architectures ...833

3.11.10 Section Summary ..834

3.12 Designing with Components ...835

3.12.1 The “Requirements” as Originally Stated ...835

3.12.2 The Actual (Extrapolated) Requirements ..837

3.12.3 Representing a Date Value in Terms of a C++ Type ...838

3.12.4 Determining What Date Value Today Is ..849

3.12.5 Determining If a Date Value Is a Business Day ..853

3.12.5.1 Calendar Requirements ...854

3.12.5.2 Multiple Locale Lookups ..858

3.12.5.3 Calendar Cache ..861

3.12.5.4 Application-Level Use of Calendar Library ..867

3.12.6 Parsing and Formatting Functionality ...873

3.12.7 Transmitting and Persisting Values ...876

3.12.8 Day-Count Conventions ..877

3.12.9 Date Math ..877

3.12.9.1 Auxiliary Date-Math Types ..878

3.12.10 Date and Calendar Utilities ...881

3.12.11 Fleshing Out a Fully Factored Implementation ..886

3.12.11.1 Implementing a Hierarchically Reusable Date Class886

3.12.11.2 Representing Value in the Date Class ...887

3.12.11.3 Implementing a Hierarchically Reusable Calendar Class895

3.12.11.4 Implementing a Hierarchically Reusable PackedCalendar Class900

3.12.11.5 Distribution Across Existing Aggregates ..902

3.12.12 Section Summary ..908

3.13 Summary ...908

Conclusion ...923

Appendix: Quick Reference 925

Bibliography 933

Index 941

ptg31790760

xvii

Preface

When I wrote my first book, Large-Scale C++ Software Design (lakos96), my publisher wanted

me to consider calling it Large-Scale C++ Software Development. I was fairly confident that

I was qualified to talk about design, but the topic of development incorporated far more scope

than I was prepared to address at that time.

Design, as I see it, is a static property of software, most often associated with an individual

application or library, and is only one of many disciplines needed to create successful software.

Development, on the other hand, is dynamic, involving people, processes, and workflows.

Because development is ongoing, it typically spans the efforts attributed to many applications

and projects. In its most general sense, development includes the design, implementation,

testing, deployment, and maintenance of a series of products over an extended period. In short,

software development is what we do.

In the more than two decades following Large-Scale C++ Software Design, I consistently

applied the same fundamental design techniques introduced there (and elucidated here), both

as a consultant and trainer and in my full-time work. I have learned what it means to assemble,

mentor, and manage large development teams, to interact effectively with clients and peers, and

to help shape corporate software engineering culture on an enterprise scale. Only in the wake

of this additional experience do I feel I am able to do justice to the much more expansive (and

ambitious) topic of large-scale software development.

ptg31790760

xviii Preface

A key principle — one that helps form the foundation of this multivolume book — is the pro-

found importance of organization in software. Real-world software is intrinsically complex;

however, a great deal of software is needlessly complicated, due in large part to a lack of basic

organization — both in the way in which it is developed and in the final form that it takes. This

book is first and foremost about what constitutes well-organized software, and also about the

processes, methods, techniques, and tools needed to realize and maintain it.

Secondly, I have come to appreciate that not all software is or should be created with the same

degree of polish. The value of real-world application software is often measured by how fast

code gets to market. The goals of the software engineers apportioned to application develop-

ment projects will naturally have a different focus and time frame than those slated to the

long-term task of developing reliable and reusable software infrastructure. Fortunately, all of

the techniques discussed in this book pertain to both application and library software — the

difference being the extent to and rigor with which the various design, documentation, and

testing techniques are applied.

One thing that has not changed and that has been proven repeatedly is that all real-world soft-

ware benefits from physical design. That is, the way in which our logical content is factored and

partitioned within files and libraries will govern our ability to identify, develop, test, maintain,

and reuse the software we create. In fact, the architecture that results from thoughtful physical

design at every level of aggregation continues to demonstrate its effectiveness in industry every

day. Ensuring sound physical design, therefore, remains the first pillar of our methodology, and

a central organizing principle that runs throughout this three-volume book — a book that both

captures and expands upon my original work on this subject.

The second pillar of our methodology, nascent in Large-Scale C++ Software Design, involves

essential aspects of logical design beyond simple syntactic rendering (e.g., value semantics).

Since C++98, there has been explosive growth in the use of templates, generic programming,

and the Standard Template Library (STL). Although templates are unquestionably valuable,

their aggressive use can impede interoperability in software, especially when generic program-

ming is not the right answer. At the same time, our focus on enterprise-scale development and

our desire to maximize hierarchical reuse (e.g., of memory allocators) compels reexamination

of the proper use of more mature language constructs, such as (public) inheritance.

Maintainable software demands a well-designed interface (for the compiler), a concise yet

comprehensive contract (for people), and the most effective implementation techniques avail-

able (for efficiency). Addressing these along with other important logical design issues, as well

ptg31790760

Preface xix

as providing advice on implementation, documentation, and rendering, rounds out the second

part of this comprehensive work.

Verification, including testing and static analysis, is a critically important aspect of software

development that was all but absent in Large-Scale C++ Software Design and limited to test-
ability only. Since the initial publication of that book, teachable testing strategies, such as

Test-Driven Development (TDD), have helped make testing more fashionable today than it

was in the 1990s or even in the early 2000s. Separately, with the start of the millennium, more

and more companies have been realizing that thorough unit testing is cost-effective (or at least

less expensive than not testing). Yet what it means to test continues to be a black art, and all

too often “unit testing” remains little more than a checkbox in one’s prescribed SOP (Standard

Operating Procedure).

As the third pillar of our complete treatment of component-based software development, we

address the discipline of creating effective unit tests, which naturally double as regression tests.

We begin by delineating the underlying concept of what it means to test, followed by how to

(1) select test input systematically, (2) design, implement, and render thorough test cases read-

ably, and (3) optimally organize component-level test drivers. In particular, we discuss delib-

erately ordering test cases so that primitive functionality, once tested, can be leveraged to test

other functionality within the same component.

Much thought was given to choosing a programming language to best express the ideas corre-

sponding to these three pillars. C++ is inherently a compiled language, admitting both prepro-

cessing and separate translation units, which is essential to fully addressing all of the important

concepts pertaining to the dimension of software engineering that we call physical design.

Since its introduction in the 1980s, C++ has evolved into a language that supports multiple

programming paradigms (e.g., functional, procedural, object-oriented, generic), which invites

discussion of a wide range of important logical design issues (e.g., involving templates, point-

ers, memory management, and maximally efficient spatial and/or runtime performance), not all

of which are enabled by other languages.

Since Large-Scale C++ Software Design was published, C++ has been standardized and

extended many times and several other new and popular languages have emerged.1 Still, for

both practical and pedagogical reasons, the subset of modern C++ that is C++98 remains the

language of choice for presenting the software engineering principles described here. Anyone

1 In fact, much of what is presented here applies analogously to other languages (e.g., Java, C#) that support separate

compilation units.

ptg31790760

xx Preface

who knows a more modern dialect of C++ knows C++98 but not necessarily vice versa. All

of the theory and practice upon which the advice in this book was fashioned is independent of

the particular subset of the C++ language to which a given compiler conforms. Superficially

retrofitting code snippets (used from the inception of this book) with the latest available C++

syntax — just because we’re “supposed to” — would detract from the true purpose of this

book and impede access to those not familiar with modern C++.2 In those cases where we have

determined that a later version of C++ could afford a clear win (e.g., by expressing an idea

significantly better), we will point them out (typically as a footnote).

This methodology, which has been successfully practiced for decades, has been independently

corroborated by many important literary references. Unfortunately, some of these references

(e.g., stroustrup00) have since been superseded by later editions that, due to covering new

language features and to space limitations, no longer provide this (sorely needed) design guid-

ance. We unapologetically reference them anyway, often reproducing the relevant bits here for

the reader’s convenience.

Taken as a whole, this three-volume work is an engineering reference for software developers

and is segmented into three distinct, physically separate volumes, describing in detail, from a

developer’s perspective, all essential technical3 aspects of this proven approach to creating an

organized, integrated, scalable software development environment that is capable of supporting

an entire enterprise and whose effectiveness only improves with time.

Audience

This multivolume book is written explicitly for practicing C++ software professionals. The

sequence of material presented in each successive volume corresponds roughly to the order in

which developers will encounter the various topics during the normal design-implementation-

test cycle. This material, while appropriate for even the largest software development organiza-

tions, applies also to more modest development efforts.

2 Even if we had chosen to use the latest C++ constructs, we assert that the difference would not be nearly as

significant as some might assume.

3 This book does not, however, address some of the softer skills (e.g., requirements gathering) often associated

with full lifecycle development but does touch on aspects of project management specific to our development

methodology.

ptg31790760

Preface xxi

Application developers will find the organizational techniques in this book useful, especially

on larger projects. It is our contention that the rigorous approach presented here will recoup its

costs within the lifetime of even a single substantial real-world application.

Library developers will find the strategies in this book invaluable for organizing their software

in ways that maximize reuse. In particular, packaging software as an acyclic hierarchy of fine-

grained physical components enables a level of quality, reliability, and maintainability that to

our knowledge cannot be achieved otherwise.

Engineering managers will find that throttling the degree to which this suite of techniques is

applied will give them the control they need to make optimal schedule/product/cost trade-offs.

In the long term, consistent use of these practices will lead to a repository of hierarchically

reusable software that, in turn, will enable new applications to be developed faster, better, and

cheaper than they could ever have been otherwise.

Roadmap

Volume I (the volume you’re currently reading) begins this book with our domain-independent

software process and architecture (i.e., how all software should be created, rendered, and

organized, no matter what it is supposed to do) and culminates in what we consider the state-

of-the-art in physical design strategies.

Volume II (forthcoming) continues this multivolume book to include large-scale logical design,

effective component-level interfaces and contracts, and highly optimized, high-performance

implementation.

Volume III (forthcoming) completes this book to include verification (especially unit testing)

that maximizes quality and leads to the cost-effective, fine-grained, hierarchical reuse of an

ever-growing repository of Software Capital.4

The entire multivolume book is intended to be read front-to-back (initially) and to serve as a

permanent reference (thereafter). A lot of the material presented will be new to many readers.

We have, therefore, deliberately placed much of the more difficult, detailed, or in some sense

“optional” material toward the end of a given chapter (or section) to allow the reader to skim

(or skip) it, thereby facilitating an easier first reading.

4 See section 0.9.

ptg31790760

xxii Preface

We have also made every effort to cross-reference material across all three volumes and to

provide an effective index to facilitate referential access to specific information. The material

naturally divides into three parts: (I) Process and Architecture, (II) Design and Implementation,

and (III) Verification and Testing, which (not coincidentally) correspond to the three volumes.

Volume I: Process and Architecture

Chapter 0, “Motivation,” provides the initial engineering and economic incentives for imple-

menting our scalable development process, which facilitates hierarchical reuse and thereby

simultaneously achieves shorter time to market, higher quality, and lower overall cost. This

chapter also discusses the essential dichotomy between infrastructure and application develop-

ment and shows how an enterprise can leverage these differences to improve productivity.

Chapter 1, “Compilers, Linkers, and Components,” introduces the component as the funda-

mental atomic unit of logical and physical design. This chapter also provides the basic low-level

background material involving compilers and linkers needed to absorb the subtleties of the

main text, building toward the definition and essential properties of components and physical

dependency. Although nominally background material, the reader is advised to review it care-

fully because it will be assumed knowledge throughout this book and it presents important

vocabulary, some of which might not yet be in mainstream use.

Chapter 2, “Packaging and Design Rules,” presents how we organize and package our com-

ponent-based software in a uniform (domain-independent) manner. This chapter also provides

the fundamental design rules that govern how we develop modular software hierarchically in

terms of components, packages, and package groups.

Chapter 3, “Physical Design and Factoring,” introduces important physical design concepts

necessary for creating sound software systems. This chapter discusses proven strategies for

designing large systems in terms of smaller, more granular subsystems. We will see how to

partition and aggregate logical content so as to avoid cyclic, excessive, and otherwise undesir-

able (or unnecessary) physical dependencies. In particular, we will observe how to avoid the

heaviness of conventional layered architectures by employing more lateral ones, understand

how to reduce compile-time coupling at an architectural level, and learn — by example — how

to design effectively using components.

ptg31790760

Preface xxiii

Volume II: Design and Implementation (Forthcoming)

Chapter 4, “Logical Interoperability and Testability,” discusses central, logical design con-

cepts, such as value semantics and vocabulary types, that are needed to achieve interoperability

and testability, which, in turn, are key to enabling successful reuse. It is in this chapter that we

first characterize the various common class categories that we will casually refer to by name,

thus establishing a context in which to more efficiently communicate well-understood families

of behavior. Later sections in this chapter address how judicious use of templates, proper use of

inheritance, and our fiercely modular approach to resource management — e.g., local (“arena”)

memory allocators — further achieve interoperability and testability.

Chapter 5, “Interfaces and Contracts,” addresses the details of shaping the interfaces of

the components, classes, and functions that form the building blocks of all of the software

we develop. In this chapter we discuss the importance of providing well-defined contracts

that clearly delineate, in addition to any object invariants, both what is essential and what is

undefined behavior (e.g., resulting from narrow contracts). Historically controversial topics

such as defensive programming and the explicit use of exceptions within contracts are

addressed along with other notions, such as the critical distinction between contract checking

and input validation. After attending to backward compatibility (e.g., physical substitutability),

we address various facets of good contracts, including stability, const-correctness,

reusability, validity, and appropriateness.

Chapter 6, “Implementation and Rendering,” covers the many details needed to manufac-

ture high-quality components. The first part of this chapter addresses some important consid-

erations from the perspective of a single component’s implementation; the latter part provides

substantial guidance on minute aspects of consistency that include function naming, parameter

ordering, argument passing, and the proper placement of operators. Toward the end of this

chapter we explain — at some length — our rigorous approach to embedded component-level,

class-level, and especially function-level documentation, culminating in a developer’s final

“checklist” to help ensure that all pertinent details have been addressed.

Volume III: Verification and Testing (Forthcoming)

Chapter 7, “Component-Level Testing,” introduces the fundamentals of testing: what it

means to test something, and how that goal is best achieved. In this (uncharacteristically) con-

cise chapter, we briefly present and contrast some classical approaches to testing (less-well-

factored) software, and we then go on to demonstrate the overwhelming benefit of insisting that

each component have a single dedicated (i.e., standalone) test driver.

ptg31790760

xxiv Preface

Chapter 8, “Test-Data Selection Methods,” presents a detailed treatment of how to choose

the input data necessary to write tests that are thorough yet run in near minimal time. Both clas-

sical and novel approaches are described. Of particular interest is depth-ordered enumeration,
an original, systematic method for enumerating, in order of importance, increasingly complex

tests for value-semantic container types. Since its initial debut in 1997, the sphere of applicabil-

ity for this surprisingly powerful test-data selection method has grown dramatically.

Chapter 9, “Test-Case Implementation Techniques,” explores different ways in which previ-

ously identified sampling data can be delivered to the functionality under test, and the results

observed, in order to implement a valid test suite. Along the way, we will introduce useful

concepts and machinery (e.g., generator functions) that will aid in our testing efforts. Comple-

mentary test-case implementation techniques (e.g., orthogonal perturbation), augmenting the

basic ones (e.g., the table-driven technique), round out this chapter.

Chapter 10, “Test-Driver Organization,” illustrates the basic organization and layout of our

component-level test driver programs. This chapter shows how to order test cases optimally so

that the more primitive methods (e.g., primary manipulators and basic accessors) are tested

first and then subsequently relied upon to test other, less basic functionality defined within the

same component. The chapter concludes by addressing the various major categories of classes

discussed in Chapter 4; for each category, we provide a recommended test-case ordering along

with corresponding test-case implementation techniques (Chapter 9) and test-data selection

methods (Chapter 8) based on fundamental principles (Chapter 7).

Register your copy of Large-Scale C++, Volume I, on the InformIT site for convenient

access to updates and/or corrections as they become available. To start the registration

process, go to informit.com/register and log in or create an account. Enter the product

ISBN (9780201717068) and click Submit. Look on the Registered Products tab for an

Access Bonus Content link next to this product, and follow that link to access any avail-

able bonus materials. If you would like to be notified of exclusive offers on new editions

and updates, please check the box to receive email from us.

http://informit.com/register

ptg31790760

xxv

Acknowledgments

Where do I start? Chapter 7, the one first written (c. 1999), of this multivolume book was the

result of many late nights spent after work at Bear Stearns collaborating with Shawn Edwards,

an awesome technologist (and dear friend). In December of 2001, I joined Bloomberg, and

Shawn joined me there shortly thereafter; we have worked together closely ever since. Shawn

assumed the role of CTO at Bloomberg LP in 2010.

After becoming hopelessly blocked trying to explain low-level technical details in Chapter 1

(c. 2002), I turned to another awesome technologist (and dear friend), Sumit Kumar, who

actively coached me through it and even rewrote parts of it himself. Sumit — who might be

the best programmer I’ve ever met — continues to work with me, providing both constructive

feedback and moral support.

When I became overwhelmed by the sheer magnitude of what I was attempting to do (c. 2005),

I found myself talking over the phone for nearly six hours to yet another awesome tech-

nologist (and dear friend), Vladimir Kliatchko, who walked me through my entire table of

contents — section by section — which has remained essentially unchanged ever since.

In 2012, Vlad assumed the role of Global Head of Engineering at Bloomberg and, in 2018, was

appointed to Bloomberg’s Management Committee.

ptg31790760

xxvi Acknowledgments

John Wait, the Addison-Wesley acquisitions editor principally responsible for enabling my first

book, wisely recommended (c. 2006) that I have a structural editor, versed in both writing and

computer science, review my new manuscript for macroscopic organizational improvements.

After review, however, this editor fairly determined that no reliable, practicable advice with

respect to restructuring my copious writing would be forthcoming.

Eventually (c. 2010), yet another awesome technologist, Jeffrey Olkin, joined Bloomberg.

A few months later, I was reviewing a software specification from another group. The docu-

mentation was good but not stellar — at least not until about the tenth page, after which it was

perfect! I walked over to the titular author and asked what happened. He told me that Jeffrey

had taken over and finished the document. Long story short, I soon after asked Jeffrey to act

as my structural editor, and he agreed. In the years since, Jeffrey reviewed and helped me to

rework every last word of this first volume. I simply cannot overstate the organizational, writ-

ing, and engineering contributions Jeffrey has made to this book so far. And, yes, Jeffrey too

has become a dear friend.

There are at least five other technically expert reviewers that read this entire manuscript as it

was being readied for publication and provided amazing feedback: JC van Winkel, David San-

kel, Josh Berne, Steven Breitstein (who meticulously reviewed each of my figures after their

translation from ASCII art), and Clay Wilson (a.k.a. “The Closer,” for the exceptional quality

of his code reviews). Each of these five senior technologists (the first three being members of

the C++ Standards Committee; the last four being current and former employees of Bloomberg)

has, in his own respectively unique way, made this book substantially more valuable as a result

of his extensive, thoughtful, thorough, and detailed feedback.

There are many other folks who have contributed to this book from its inception, and some

even before that. Professor Chris Van Wyc (Drew University), a principal reviewer of my

first book, provided valuable organizational feedback on a nascent draft of this volume. Tom

Marshall (who also worked with me at Bear Stearns) and Peter Wainwright have worked with

me at Bloomberg since 2002 and 2003, respectively. Tom went on to become the head of the

architecture office at Bloomberg, and Peter, the head of Bloomberg’s SI Build team. Each of

them has amassed a tremendous amount of practical knowledge relating to metadata (and the

tools that use it) and were kind enough to have co-authored an entire section on that topic (see

section 2.16).

ptg31790760

Acknowledgments xxvii

Early in my tenure at Bloomberg (c. 2004), my burgeoning BDE5 team was suffering from its

own success and I needed reinforcements. At the time, we had just hired several more-senior

folks (myself included) and there was no senior headcount allotted. I went with Shawn to the

then head of engineering, Ken Gartner, and literally begged him to open five “junior” posi-

tions. Somehow he agreed, and within no time, all of the positions were filled by five truly

outstanding candidates — David Rubin, Rohan Bhindwale, Shezan Baig, Ujjwal Bhoota, and

Guillaume Morin — four by the same recruiter, Amy Resnik, who I’ve known since 1991 (her

boss, Steven Markmen, placed me at Mentor Graphics in 1986). Every one of these journeyman

engineers went on to contribute massively to Bloomberg’s software infrastructure, two of them

rising to the level of team lead, and one to manager; in fact, it was Guillaume who, having only

1.5 years of work experience, implemented (as his very first assignment) the “designing with

components” example that runs throughout section 3.12.

In June 2009, I recall sitting in the conference hotel for the C++ Standard Committee meet-

ing in Frankfurt, Germany, having a “drink” (soda) with Alisdair Meredith — soon to be the

library working group (LWG) chair (2010-2015) — when I got a call from a recruiter (Amy

Resnik, again), who said she had found the perfect candidate to replace (another dear friend)

Pablo Halpern on Bloomberg’s BDE team (2003-2008) as our resident authority on the C++

Standard. You guessed it: Alisdair Meredith joined Bloomberg and (soon after) my BDE team

in 2009, and ever since has been my definitive authority (and trusted friend) on what is in C++.

Just prior to publication, Alisdair thoroughly reviewed the first three sections of Chapter 1 to

make absolutely sure that I got it right.

Many others at Bloomberg have contributed to the knowledge captured in this book: Steve

Downey was the initial architect of the ball logger, one of the first major subsystems developed

at Bloomberg using our component-based methodology; Jeff Mendelson, in addition to provid-

ing many excellent technical reviews for this book, early on produced much of our modern

date-math infrastructure; Mike Giroux (formerly of Bear Stearns) has historically been my able

toolsmith and has crafted numerous custom Perl scripts that I have used throughout the years

to keep my ASCII art in sync with ASCII text; Hyman Rosen, in addition to providing several

5 BDE is an acronym for BDE Development Environment. This acronym is modeled after ODE (Our Development

Environment) coined by Edward (“Ned”) Horn at Bear Stearns in early 1997. The ‘B’ in BDE originally stood for

“Bloomberg” (a common prefix for new subsystems and suborganizations of the day, e.g., bpipe, bval, blaw) and

later also for “Basic,” depending on the context (e.g., whether it was work or book related). Like ODE, BDE initially

referred simultaneously to the lowest-level library package group (see section 2.9) in our Software-Capital repository

(see section 0.5) along with the development team that maintained it. The term BDE has long since taken on a life

of its own and is now used as a moniker to identify many different kinds of entities: BDE Group, BDE methodology,

BDE libraries, BDE tools, BDE open-source repository, and so on; hence, the recursive acronym: BDE Development

Environment.

ptg31790760

unattributed passages in this book, has produced (over a five-year span) a prodigious (clang-

based) static-analysis tool, bde_verify,6 that is used throughout Bloomberg Engineering

to ensure that conforming component-based software adheres to the design rules, coding

standards, guidelines, and principles advocated throughout this book.

I would be remiss if I didn’t give a shout-out to all of the current members of Bloomberg’s

BDE team, which I founded back in 2001, and, as of April 2019, is now man-

aged by Mike Verschell along with Jeff Mendelsohn: Josh Berne, Steven Breitstein,

Nathan Burgers, Bill Chapman, Attila Feher, Mike Giroux, Rostislav Khlebnikov, Alisdair

Meredith, Hyman Rosen, and Oleg Subbotin. Most, if not all, of these folks have reviewed

parts of the book, contributed code examples, helped me to render complex graphs or write

custom tools, or otherwise in some less tangible way enhanced the value of this work.

Needless to say, without the unwavering support of Bloomberg’s management team from

Vlad and Shawn on down, this book would not have happened. My thanks to Andrei Basov

(my current boss) and Wayne Barlow (my previous boss) — both also formerly of Bear

Stearns — and especially to Adam Wolf, Head of Software Infrastructure at Bloomberg, for

not just allowing but encouraging and enabling me (after some twenty-odd years) to finally

realize this first volume.

And, of course, none of this would have been possible had Bjarne Stroustrup somehow

decided to do anything other than make the unparalleled success of C++ his lifework.

I have known Bjarne since he gave a talk at Mentor Graphics back in the early 1990s. (But

he didn’t know me then.) I had just methodically read The Annotated C++ Reference Manual
(ellis90) and thoroughly annotated it (in four different highlighter colors) myself. After his

talk, I asked Bjarne to sign my well-worn copy of the ARM. Decades later, I reminded him that

it was I who had asked him to sign that disheveled, multicolored book of his; he recalled

that, at least. Since becoming a regular attendee of the C++ Standards Committee meet-

ings in 2006, Bjarne and I have worked closely together — e.g., to bring a better version

of BDE’s (library-based) bsls_assert contract-assertions facility, used at Bloomberg since

2004, into the language itself (see Volume II, section 6.8). Bjarne has spoken at Bloomberg

multiple times at my behest. He reviewed and provided feedback on an early version of the

preface of this book (minus these acknowledgments) and has also supplied historical data for

footnotes. The sage software engineering wisdom from his special edition (third edition) of

The C++ Programming Language (stroustrup00) is quoted liberally throughout this volume.

Without his inspiration and encouragement, my professional life would be a far cry from

what it is today.

6 https://github.com/bloomberg/bde_verify

xxviii Acknowledgments

https://github.com/bloomberg/bde_verify

ptg31790760

Acknowledgments xxix

Finally, I would like to thank all of the many generations of folks at Pearson who have waited

patiently for me throughout the years to get this book done. The initial draft of the manuscript

was originally due in September 2001, and my final deadline for this first volume was at the

end of September 2019. (It appears I’m a skosh late.) That said, I would like to recognize

Debbie Lafferty, my first editor who then (in the early 2000s) passed the torch to Peter Gordon

and Kim Spenceley (née Boedigheimer) with whom I worked closely for over a decade. When

Peter retired in 2016, I began working with my current editor, Greg Doench.

Although Peter was a tough act to follow, Greg rose to the challenge and has been there for

me throughout (and helped me more than he probably knows). Greg then introduced me to

Julie Nahil, who worked directly with me on readying this book for production. In 2017,

I reconnected with my lifelong friend and now wife, Elyse, who tirelessly tracked down copi-

ous references and proofread key passages (like this one). By late 2018, it became clear that the

amount of work required to produce this book would exceed what anyone had anticipated, and

so Pearson retained Lori Hughes to work with me, in what turned out to be a nearly full-time

capacity for the better part of 2019. I cannot say enough about the professionalism, fortitude, and

raw effort put forth by Lori in striving to make this book a reality in calendar year 2019. I want

to thank Lori, Julie, and Greg, and also Peter, Kim, and Debbie, for all their sustained support

and encouragement over so many, many years. And this is but the first of three volumes, OMG!

The list of people that have contributed directly and/or substantially to this work is dauntingly

large, and I have no doubt that, despite my efforts to the contrary, many will go unrecognized

here. Know that I realize this book is the result of my life’s experiences, and for each of you

that have in some way contributed, please accept my heartfelt thanks and appreciation for being

a part of it.

ptg31790760

This page intentionally left blank

ptg31790760

1

0
Motivation

0.1 The Goal: Faster, Better, Cheaper!

0.2 Application vs. Library Software

0.3 Collaborative vs. Reusable Software

0.4 Hierarchically Reusable Software

0.5 Malleable vs. Stable Software

0.6 The Key Role of Physical Design

0.7 Physically Uniform Software: The Component

0.8 Quantifying Hierarchical Reuse: An Analogy

0.9 Software Capital

0.10 Growing the Investment

0.11 The Need for Vigilance

0.12 Summary

ptg31790760

2 Chapter 0 Motivation

Large-scale, highly maintainable software systems don’t just happen, nor do techniques used

successfully by individual application developers necessarily scale to larger, more integrated

development efforts. This is an engineering book about developing software on a large scale.

But it’s more than just that. At its heart, this book teaches a skill. A skill that applies to software

of all kinds and sizes. A skill that, once learned, becomes almost second nature, requiring little

if any additional time or effort. A skill that repeatedly results in organized systems that are

fundamentally easy to understand, verify, and maintain.

The software development landscape has changed significantly since my first book.1 During

that time, the Standard Template Library (STL) was adopted as part of the initial C++98 Lan-

guage Standard and has since been expanded significantly. All relevant compilers now fully

support exceptions, namespaces, member templates, etc. The Internet has made open-source

libraries far more accessible. Thread, exception, and alias safety have become common design

considerations. Also, many more people now appreciate the critical importance of sound

 physical design (see Figure 0-32, section 0.6) — a dimension of software engineering I intro-

duced in my first book. Although fundamental physical design concepts remain the same, there

are important new ways to apply them.

This book was written with the practitioner in mind. The focus is closely tied to a sequential

development methodology. We describe in considerable detail how to develop software in terms

of the well-defined atomic physical modules that we call components. A rich lexicon has been

assembled to characterize the process. Many existing engineering techniques have been updated

and refined. In particular, we present (see Volume III) a comprehensive treatment of component-

level testing. What used to be considered a black art, or at least a highly specialized craft, has

emerged into a predictable, teachable engineering discipline. We also discuss (see Volume II) the

motivations behind and effective use of many essential “battle-hardened” design and implemen-

tation techniques. Overall, the engineering processes described here (Volume I) complement,

and are synergistic with, proven project-management processes.

Bottom line: This book is designed for professional software developers and is all about being

successful at developing software that can scale to arbitrary size. We have delineated the issues

that we deem integral and present them in an order that roughly corresponds to our software-

development thought process. Many important new ideas are presented that reflect a sometimes

harsh reality. The value of this book, however, is not just in the ideas it contains but in the cohe-

sive regularity with which it teaches sound engineering practices. Not everything we talk about

in this book is popular (yet), but initially neither was the notion of physical design.

1 lakos96

ptg31790760

Section 0.1 The Goal: Faster, Better, Cheaper! 3

0.1 The Goal: Faster, Better, Cheaper!

The criterion for successful software application development in industry is invariably the

delivery of the best product at the lowest possible cost as quickly as possible. Implicit in this

goal are three fundamental dimensions:

• Schedule (faster): Expediency of delivery of the software

• Product (better): Enhanced functionality/quality of the software

• Budget (cheaper): Economy of production of the software

In practice, we may optimize the development of a particular software application or product

for at most two of these parameters; the third will be dictated. Figure 0-1 illustrates the inter-

dependence of these three dimensions.2

Product

Cheapest budget

BudgetSchedule

Fastest schedule

Best product

Figure 0-1: Schedule/product/budget trade-offs

At any given point, our ability to develop applications is governed by our existing infrastruc-

ture, such as developers, libraries, tools, and so on. The higher the quality goal of our product,

the more calendar time and/or engineering resources it will consume. If we try to make a prod-

uct of similar quality take less time and thereby improve the schedule, it will cost more — often

a lot more, thereby negatively impacting the budget. If we have a fixed budget, the only way

2 mcconnell96, section 6.6, “Schedule, Cost, and Product Trade-Offs,” Figure 6-10, p. 126

ptg31790760

4 Chapter 0 Motivation

to get the work done quicker is to do less (e.g., fewer features, less testing). This inescapable

reality seems intrinsic to all software development.3

Still, it would be nice if there were some predictable way that, over time, we could improve all

three of these parameters at once — that is, devise a methodology that, as a byproduct of its

use, would continually reduce both cost and time to market while improving quality for future

 products. In graphical terms, this methodology would shift the faster/better/cheaper design space

for applications and products further and further from the origin, as illustrated in Figure 0-2.

(Faster)
Schedule

2020

(Better)
Product (Future)

Time (t)

(Cheaper)
Budget

2030

2040

Figure 0-2: Improving the schedule/product/budget design space

3 JC van Winkel has commented that these relationships are difficult to appreciate as a single graph and suggests that

there are other, more intuitive ways to approach understanding these trade-offs, e.g., using sliders.

For a fixed schedule (calendar time to delivery), you get this slider:

(Cheaper) Budget (Better) Product

For a fixed budget (money/resources), you get this slider:

(Better) Product (Faster) Schedule

For a fixed product (features/quality), you get this slider:

(Faster) Schedule (Cheaper) Budget

This final slider is at the heart of the titular thesis of Fred Brooks’s classic work The Mythical Man Month (see

brooks75), which asserts that the idea that there is an inverse linear proportionality between time and cost that holds over

the entire range of interest is pure fantasy. The geometric growth of interpersonal interactions (corroborated by empirical

data; boehm81, section 5.3, pp. 61–64) suggests that — within a narrow band of relevant limits — this relationship might

reasonably be modeled as an inverse quadratic one between time (T) and cost (C), i.e., ∝T C1 (see section 0.9).

ptg31790760

Section 0.2 Application vs. Library Software 5

Assuming such a methodology exists, what would have to change over time? For example,

the experience of our developers will presumably increase, leading to better productivity and

 quality. As developers become more experienced and productive, we will naturally have to pay

them more, but not proportionally so. Still, there are limits to how productive any one person

can be when given a fixed development environment, so the environment too must change.4

Over time, we might expect third-party and increasingly open-source software-development

tools and libraries to improve, enhancing our development environment and thereby increas-

ing our productivity. While this expectation is reasonable, it will be true for our competitors as

well. The question is, “What can we do proactively to improve our productivity relative to the

competition over time?”

Implementing a repeatable, scalable software development process has been widely acknowl-

edged to be the single most effective way of simultaneously improving quality while reducing

development time and cost. Without such a process, the cost of doing business, let alone the risk

of failure, increases nonlinearly with project size. Following a sound development process is

essential, yet productivity is unlikely to improve asymptotically by more than a fixed constant

multiple. Along with a repeatable process, we also need some form of positive feedback in the

methodology that will continually amplify development productivity in our environment.

Now consider that there is one essential output of all software development that continues to

increase over time: the developed software itself. If it were possible to make use of a significant

fraction of this software in future projects, then the prospect for improving productivity could

be essentially unbounded. That is, the more software we develop, the more that would be read-

ily available for reuse. The challenge then becomes to find a way to organize the software so

that it can and will be reused effectively.

0.2 Application vs. Library Software

Application development is usually single-minded and purposeful. In large organizations,

this purposefulness frequently leads both to duplicated code and to sets of interdependent

 applications. Each piece works, but the overall code base is messy, and each new change or

addition becomes increasingly more difficult. This all too frequent “design pattern” has been

coined a “Big Ball of Mud.”5

4 Upon reviewing a near-final draft of this volume, Kevlen Henney remarked, “I have recently been advocating that

we ditch the term ‘faster’ in favour of ‘sooner.’ It’s not the speed that matters, it’s the arrival time. These are not the

same concept, and the continued focus on speed is a problem rather than a desirable goal. Good design is about

taking the better route to arrive sooner; whether you go faster or not is less important.”

5 foote99

ptg31790760

6 Chapter 0 Motivation

The resulting code base has no centralized organizational structure. Any software that could

in principle be useful across the enterprise either has been designed a bit too subjectively to

be generally useful or is too intertwined with the application-specific code to be extricated.

Besides, because the code must be responsive to the changing needs of its original master,

it would be risky to rely on the stability of such software. Also, because a business typically

profits from speed, there is not much of a premium on any of the traditional subdisciplines of

programming such as factoring and interface design. Although this ad hoc approach often leads

to useful applications in a relatively short time, it also results in a serious maintenance burden.

As time goes by, not only is there no improvement in the code base, maintenance costs continue

to grow inordinately faster than necessary.

To understand the problem better, we begin by observing that there are two distinct kinds

of so ftware — application software and library software — and therefore two kinds of

 development. An application is a program (or tightly coupled suite of programs) that satisfies

a particular business need. Due to ever-changing requirements, application source code is

 inherently unstable and may change without notice. All source code explicitly local to an

 application must, in our view, be limited to use by only that application (see section 2.13).

A library, on the other hand, is not a program, but a repository. In C++, it is a collection of

header and object files designed to facilitate the sharing of classes and functions. Generally

speaking, libraries are stable and therefore potentially reusable. The degree to which a body

of software is particular to a specific application or more generally useful to an entire domain

will govern the extent and effectiveness of its reuse within an organization and, perhaps, even

beyond.

These contrasting properties of specificity and stability suggest that different development strat-

egies and policies for application and library code should apply. In particular, library developers

(few in number) will be obliged to observe a relatively strict discipline to create reusable soft-

ware, whereas application developers (much more numerous) are allowed more freedom with

respect to organizational rules. Given the comparatively large number of application developers

who will (ideally) depend on library software, it is critical that library interfaces be especially

well thought through, as subsequent changes could wind up being prohibitively expensive.

Classical software design is pure top-down design. At each level of refinement, every subsys-

tem is partitioned independently of its peers. Consideration of implementation at each level

of decomposition is deliberately postponed. This process recurses until a codable solution is

attained. Adhering to a pure top-down design methodology results in an inverted tree of hierar-

chical modules (as illustrated in Figure 0-3) having no reconvergence and, therefore, no reuse.

ptg31790760

Section 0.2 Application vs. Library Software 7

A B

A2A1 B1 B3B2

main

a A1b A2a A2cA2b B1bB1a B2a B2b B3a BB3b… …

Figure 0-3: Pure top-down design (BAD IDEA)

Although the process of designing any particular application is primarily top-down, experi-

ence tells us that, within any given application domain, there are almost always recurring

needs for similar functionality. Within the domain of integrated circuit computer-aided design

(ICCAD), for example, we might expect there to be many separate needs for classes such as

 Transistor, Contact, and Wire. There will also be a recurring need for functionality that

is common across many application domains. Examples include logging, transport, messag-

ing, marshaling, and, of course, various high-performance data structures and algorithms, such

as std::vector and std::sort, respectively. Failing to recognize common subsystems

(and components; see section 0.7) would mean that each must be written anew wherever the

recurring need is rediscovered. We assert that it is incumbent on any responsible enterprise to

actively address such naturally recurring inefficiencies.

In an ideal application development paradigm, designers would actively seek out commonali-

ties in required functionality across the various subsystems of their programs and, wherever

practical, either employ existing solutions or design well-factored components that can serve

their recurring needs. Integrating existing solutions into a top-down design makes the design

process a hybrid between pure top-down and bottom-up — perhaps the most common architec-

tural approach used in practice today. Even within the scope of a single application, there are

typically ample opportunities to apply this kind of factoring for reuse to good effect.

Sadly, reusable software is not normally a byproduct of the development of applications.

Because of the focused view and limited time horizon for the great majority of application

development efforts, attempts to write software to exploit commonality across applications —

absent a separate team of library developers (see section 0.10) — are almost never viable. This

observation is not a criticism of application developers but merely reflects a common economic

ptg31790760

8 Chapter 0 Motivation

reality. The success of an application development team is determined by the extent to which it

fulfills a business need on time and within budget. Any significant deviation from this goal in

the name of reuse is likely to be penalized rather than rewarded. Given the express importance

of time to market, it is a rare application developer indeed that makes decoupled, leverageable

software available in a form generally consumable by others, while still meeting his or her

primary responsibilities.

Library developers, on the other hand, have a quite different mission: Make the overall develop-

ment process more efficient! The most common goal of library development is to increase the

long-term productivity of application developers while reducing maintenance costs (e.g., those

resulting from rampantly duplicative software). There are, of course, certain initial costs in

setting up a library suitable for public consumption. Moreover, the incremental costs of build-

ing reusable components are higher than for similar (nonreusable) ones developed for use in

a single application. But, given that the costs of developing library software can be amortized

over all the applications that use it, some amount of extra cost can easily be justified.

As Figure 0-4 illustrates, there are several inherent differences between application and

library software. Good application software (Figure 0-4a) is generally malleable, whereas library

software (Figure 0-4b) needs to be stable (see section 0.5). Because the scope of changes to

an individual application is bounded, the design of the application’s pieces is often justifiably

more tightly collaborative (see section 0.3) than would be appropriate in a library used across

arbitrarily many applications.6

(a) Sufficient/adequate

Top-down
Collaborative

Malleable

Application Software
Agile Developers

(b) Complete/robust

Bottom-up
Reusable

Stable

Library Software
Disciplined Developers

Figure 0-4: Library versus application software development

6 See also sutter05, item 8, pp. 16–17.

ptg31790760

Section 0.2 Application vs. Library Software 9

The requirements for library software are, in many ways, just the union of those of the applica-

tions that depend on it (see Volume II, section 5.7). For example, the lifetime of a separately

releasable library is the union of the lifetimes of the applications that use it. Hence, libraries

tend to live longer than individual applications. If an application is to be released on a particular

platform, then so must any library that supports it. Therefore, libraries must be more portable

than applications. Consequently, there will often be no single application team that can sup-

port a given library throughout its productive lifetime on all the platforms for which it might

be needed. This observation further suggests the need for a separate, dedicated team to support

shared resources (see section 0.10).

Library code must be more reliable than typical application code, and our methodology ampli-

fies this dichotomy. For example, compared with typical application code, library code usually

has more detailed descriptions of its programmatic interfaces, called contracts (see Volume II,

section 5.2). Detailed function-level documentation (see Volume II, section 6.17) permits more

accurate and thorough testing, which is how we achieve reliability (see Volume II, section 6.8,

and Volume III in its entirety).

Also, library software is more stable, i.e., its essential behavior does not change (see

section 0.5). More stability reduces the likelihood that bugs will be introduced or that test

cases will need to be reworked due to changes in behavior; hence, stability improves reliability

(See Volume II, section 5.6). Having a comparatively large number of eclectic clients will

provide a richer variety of use cases that, over time, tends to prove the library software more

thoroughly. Given that the cost of debugging code that you did not write (or write recently)

is significantly higher than for code you are working on today, there is a strong incentive for

library developers to “get it right the first time” (see Volume III, section 7.5).

When writing library software, we strive to absorb the complexity internally so as to minimize it

outwardly. That is, library developers aggressively trade off ease of implementation (by them) for

ease of use (by their clients). Small pockets of very complex code are far better than distributed,

somewhat complicated code. For example, we assert that it is almost always better to provide

two member functions than to provide a single template member function if only two parameter

types (e.g., consider const char * and std::string) make sense (see Volume II, section 4.5).

More controversially, it is often better to have two copies of a struct — e.g., one nested/

private in the .h file (accessible to inline methods and friends) and the other at file scope in

the .cpp file (accessible to file-scope static functions) — and make sure to keep them

in sync locally than to pollute the global space with an implementation detail. In general,

library developers should plan to spend significant extra effort to save clients even a slight

